跳到主要内容

1-2. 极限

泰勒公式

  • sinx=x13!x3+15!x5+O(x5)\sin{x}=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+O(x^5)
  • arcsinx=x+13!x3+O(x3)\arcsin{x}=x+\frac{1}{3!}x^3+O(x^3)
  • cosx=112!x2+14!x4+O(x4)\cos{x}=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+O(x^4)
  • tanx=x+13x3+O(x3)\tan{x}=x+\frac{1}{3}x^3+O(x^3)
  • arctanx=x13x3+O(x3)\arctan{x}=x-\frac{1}{3}x^3+O(x^3)
  • ln(1+x)=x12x2+13x3+O(x3)\ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3+O(x^3)
  • ex=1+11!x+12!x2+13!x3+O(x)e^x=1+\frac{1}{1!}x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+O(x)
  • αx=1+11!(lna)x+12!(lna)2x2+O(x2)\alpha^x=1+\frac{1}{1!}(\ln{a})x+\frac{1}{2!}(\ln{a})^2x^2+O(x^2)
  • (1+x)α=1+αx+α(1α)2x2+O(x2)(1+x)^\alpha=1+\alpha x+\frac{\alpha(1-\alpha)}{2}x^2+O(x^2)

数列极限

若有 xn+1=f(xn)x_{n+1}=f(x_n),且 f(x)k<1f'(x) \leq k < 1,由压缩映射原理,可得数列 {xn}\{x_n\} 收敛。(直接用无需证明)