高等数学13. 多元微分本页总览13. 多元微分 偏导数定义 fx′(x0,y0)=∂f∂x∣x=x0, y=y0=limx→x0f(x,y0)−f(x0,y0)x−x0f'_x(x_0, y_0)=\frac{\partial f}{\partial x}|_{x=x_0,\ y=y_0}=\lim_{x \to x_0}{\frac{f(x, y_0)-f(x_0, y_0)}{x-x_0}}fx′(x0,y0)=∂x∂f∣x=x0, y=y0=limx→x0x−x0f(x,y0)−f(x0,y0) fy′(x0,y0)=∂f∂y∣x=x0, y=y0=limy→y0f(x0,y)−f(x0,y0)y−y0f'_y(x_0, y_0)=\frac{\partial f}{\partial y}|_{x=x_0,\ y=y_0}=\lim_{y \to y_0}{\frac{f(x_0, y)-f(x_0, y_0)}{y-y_0}}fy′(x0,y0)=∂y∂f∣x=x0, y=y0=limy→y0y−y0f(x0,y)−f(x0,y0) (dydx)2≠d2ydx2(\frac{dy}{dx})^2 \neq \frac{d^2y}{dx^2}(dxdy)2=dx2d2y 偏导数链式求导规则